
Flow equations for Hamiltonians: contrasting different approaches by using a numerically

solvable model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 2707

(http://iopscience.iop.org/0305-4470/36/11/305)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 02/06/2010 at 11:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 2707–2736 PII: S0305-4470(03)55692-X

Flow equations for Hamiltonians: contrasting
different approaches by using a numerically solvable
model

T Stauber and A Mielke

Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 19,
D-69120 Heidelberg, Germany

Received 29 October 2002, in final form 29 January 2003
Published 6 March 2003
Online at stacks.iop.org/JPhysA/36/2707

Abstract
To contrast different generators for flow equations for Hamiltonians and to
discuss the dependence of physical quantities on unitarily equivalent, but
effectively different, initial Hamiltonians, a numerically solvable model is
considered which is structurally similar to impurity models. By this we discuss
the question of optimization for the first time. A general truncation scheme
is established that produces good results for the Hamiltonian flow as well as
for the operator flow. Nevertheless, it is also pointed out that a systematic and
feasible scheme for the operator flow on the operator level is missing. For this,
an explicit analysis of the operator flow is given for the first time. We observe
that truncation of the series of the observable flow after the linear or bilinear
terms does not yield satisfactory results for the entire parameter regime as—
especially close to resonances—even high orders of the exact series expansion
carry considerable weight.

PACS numbers: 03.65.−w, 05.10.Cc, 33.80.−b

1. Introduction

1.1. Flow equations

Eight years ago, Głazek and Wilson [1] and independently Wegner [2] introduced a new non-
perturbative method to diagonalize, renormalize or simplify a given Hamiltonian. Whereas
in high energy physics the method is known as ‘similarity transformations’, the term ‘flow
equations’ has been established in the solid-state community. The idea is conceptually simple:
instead of diagonalizing the Hamiltonian of the system by a single unitary transformation, one
performs a continuous sequence of infinitesimal unitary transformations and thus induces a
flow on the system parameters. The procedure is neither constrained to specific symmetries
nor to certain parameter regimes—but is accessible to any system described by a Hamiltonian.
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Thus, the method has been successfully applied to various models of solid-state and nuclear
physics. Examples are dissipative quantum systems [3–5], the electron–phonon problem
[6, 7] or the Hubbard model [8]. For a recent review on the flow equation method see [9].

The main advantage of the method is its flexibility. This is similar to the numerical
diagonalization of a given matrix: there are many different possibilities to reach the goal. One
is free to choose the basis in which the diagonalization is performed and within a given basis
one is free to choose the concrete series of unitary transformations that finally diagonalizes
the matrix. Depending on the basis and on the concrete series of unitary transformations,
convergence may be good or poor, and numerical errors may be small or large.

Similarly, many different flow equations can be formulated to diagonalize or simplify a
given Hamiltonian. Even though all different flow equations are equivalent and will eventually
lead to the same result, matters change as soon as approximations are involved. Typically one
needs to cut the hierarchy of newly generated interaction terms and then neglect operators,
which are assumed to be irrelevant. Yet, there is no satisfactory definition for irrelevant
operators within the flow equation approach. Whether or not a contribution is irrelevant
depends on the initial Hamiltonian and on the goal one wants to reach.

Usually, approximations were justified when certain sum rules, mostly stemming from
the invariance of commutation relations during the unitary flow, hold exactly or at least
asymptotically [5, 7]. In addition, exact relations between static and dynamic properties—
such as the generalized Shiba relation in the case of the spin–boson model [10]—can serve
as justification for prior approximations [5]. A general consistency check lies in the explicit
investigation of the flow of the neglected operators.

So far, a detailed discussion on optimization of flow equations is missing. With this
work, we want to start to fill this gap by addressing the following questions: e.g., any initial
Hamiltonian H implicitly depends on a number of parameters H = H(ψ, θ, . . .) where the
parameters are associated with certain unitary transformationsU1(ψ),U2(θ), . . . .

Can the parameters ψ, θ, . . . be chosen such that a given flow equation scheme yields
optimal results? A second variation that will be discussed lies in the arbitrary definition of the
‘diagonal’ Hamiltonian, H0—as mentioned above. Will different H0 yield similar results for
physical quantities and is there an optimalH0 for all physical quantities—or does the optimal
H0 depend on the physical quantity under scrutiny?

Another fundamental question associated with the flow equation approach is connected
to the observable flow and has not been discussed in depth yet. For this, we note that in order
to take advantage of the simple structure of the fixed point Hamiltonian, the observable has to
be transformed as well—by the same sequence of unitary transformations that diagonalized
the Hamiltonian. Since usually the continuous transformation is designed such that the
diagonalization of the Hamiltonian is ‘optimal’, the observable flow is more likely to suffer
from uncontrolled approximations. We will address the question if there is a scheme that
optimizes both Hamiltonian and observable flow and also compares the observable flow on
the operator level.

To do so, we will not proceed systematically but we will address these questions more
specifically. Namely, we will consider an explicit model which is structurally similar to
dissipative impurity models—but still exactly solvable via numerical diagonalization. We will
call this model the Rabi model and it is presented in the next subsection. We use this model
to test different approximation schemes and compare the results with the numerically exact
solution. This strategy was first pursued by Richter in his diploma work [11]. We extend
his work in various directions. One point is to investigate Hamiltonians where the reflection
symmetry is broken. This is important if one wants to understand the mechanism of phase
transition as being observed in the spin–boson model [12].
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In section 2, we develop a general truncation scheme which yields good results over a
wide range of the parameter space. Furthermore, we present a particular truncation scheme
which leaves the Hamiltonian form-invariant during the flow. The question of the invariance
of the flow equations with respect to the particular choice of initial Hamiltonians, provided that
they only vary by a unitary transformation, is discussed. As a criterion for the quality of the
flow equations, we look at the ground-state energy as a function of the bias as an example for
the flow of a parameter of the Hamiltonian. In section 3, we give a thorough discussion about
the flow of observables. As reference we will not only investigate the expectation value of
observables, but also compare the flow equation result with the exact solution on the operator
level for the first time. For this, an expansion of the operator into a basis of normal ordered
bosonic operators is given. In section 4, we conclude with general remarks and conclusions.

1.2. The Rabi Hamiltonian

The specific model we use for our discussion of various realizations of flow equations and
various approximation schemes is the spin–boson Hamiltonian with only one mode, which we
will call the Rabi model in order to distinguish it from the spin–boson model with an arbitrary
number of modes. The Hamiltonian is given by

H = −�0

2
σx +

ε0

2
σz + ω0b

†b + σz
λ0

2
(b + b†) + E0. (1)

Here, b(†) denotes the bosonic degree of freedom and σi , with i = x, y, z, are the Pauli spin
matrices. They obey the canonical commutation relation [b, b†] = 1 and the spin-1/2 algebra
[σi, σj ] = 2iεijkσk. Since there is only one mode present, a numerical diagonalization is
feasible by truncating the bosonic Hilbert space after n bosonic excitations with some fixed
value of n.

The model was first introduced in the context of spontaneous emission and absorption of
atoms and due to its long history there exists an enormous amount of work that has already
been published on this model. It is impossible to review or cite all these papers—a good
overview may be found in the paper by Graham et al [13]. The model has also been discussed
in connection with quantum chaos [14, 15] and extensions of it can serve for the description
of optical phonons interacting with two-level systems or quantum dots within a solid-state
matrix [16]. In the context of flow equations, the model has been discussed by Mielke [17]
using a set of flow equations that preserve the banded structure of the Hamiltonian. In the
present work we focus on low energy properties of the Rabi model. Reference [17] is in some
sense complementary to the present work since the high energy modes were discussed in the
former.

In the present work we are interested in general properties of the flow equation method.
The reasons for us to investigate the Rabi model lie in the fact that it couples a two-level
system to a ‘bath’ resembled by the bosonic degree of freedom. And since we only consider
one mode, the system is still exactly solvable via numerical diagonalization.

2. Flow of the Hamiltonian

2.1. Setting up the basis

In order to diagonalize the Hamiltonian (1), we will perform a continuous unitary
transformation. The flow equations are generated by the anti-Hermitian operator η which is
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canonically given by η = [H0,H ], whereH0 defines the diagonal Hamiltonian [2]. Different
choices of η are possible as well. The flow equations are of the form

dH

d	
= [η,H ] (2)

where both H and η depend on the flow parameter 	. The choice η = [H0,H ] is likely
to decouple the fermionic system from the bosonic system, and the fixed point Hamiltonian
H(	 = ∞) is then basically given by H ∗

0 where the asterisk indicates that the parameters of
the initial diagonal Hamiltonian are in general renormalized. For a brief introduction, we refer
to appendix A, which treats the Rabi model with � = 0 and motivates the approach given
here.

Obviously, different choices for H0 can lead to different flow equations. Another
ambiguity stems from the fact that the initial Hamiltonian may differ by a unitary
transformation. If we restrict ourselves to orthogonal transformations in the two-dimensional
Hilbert space and to simple translations in the bosonic Hilbert space, i.e.

US =
(

cos ψ2 sin ψ

2

−sin ψ

2 cos ψ2

)
UB = exp

(
θ
λ0

2ω0
(b − b†)

)
(3)

the general initial Hamiltonian with respect to the Hamiltonian (1) is given by

H = −�
′

2
σx +

ε ′

2
σz + ω0b

†b +
λe

2
(b + b†) + σx

λx

2
(b + b†) + σz

λz

2
(b + b†) + E′ (4)

where we introduced the following parameters:

�′ = �0 cosψ + ε̃ sinψ ε ′ = ε̃ cosψ −�0 sinψ (5)

λe = θλ0 λx = −sinψλ0 λz = cosψλ0 (6)

E′
0 = E0 + θ2 λ

2
0

4ω0
ε̃ = ε0 + θ

λ2
0

ω0
. (7)

As mentioned above, different generators and different unitarily equivalent Hamiltonians
will lead to the same physical results if no approximations are involved. But the above model
is not solvable analytically and therefore approximations become necessary. In the special
case of the Rabi model the flow equations will generate an infinite series of new coupling
terms which cannot be summed up formally to yield a closed expression1.

In this section we will first only take coupling terms into account which are linear in
the bosonic operators and have real coefficients. This means that with respect to the initial
Hamiltonian (4), only the term iσy(b − b†) will be newly generated which resembles the
lowest order of the polaron transformation (see, e.g., [12]). Using a generator which is not
of the simple form η = [H0,H ], we will also discuss flow equations which leave the initial
Hamiltonian form-invariant. We are able to show analytically that the fixed point of the flow
equation is independent with respect to the (distinguished) unitary transformation.

2.2. Flow equations with respect to the canonical generator

In the following subsection we will discuss flow equations which are obtained by employing
the canonical generator η = [H0,H ]. This gives rise to new interaction terms. The truncated

1 In appendix A we show that an infinite series of newly generated operators can be summed up for an exactly
solvable model to yield a closed expression.
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Hamiltonian shall be given by

H = −�
2
σx +

ε

2
σz + ω0b

†b +
λe

2
(b + b†) + σx

λx

2
(b + b†)

+ iσy
λy

2
(b − b†) + σz

λz

2
(b + b†) + E (8)

where all parameters but the bath energyω0 are explicitly 	-dependent. The above Hamiltonian
represents the most general Hermitian operator which includes all possible interaction terms
acting on the underlying Hilbert space up to linear bosonic operators with real coefficients.

The flow shall be governed by the generator

η = iσyη0,y + ηe(b − b†) + σxηx(b − b†) + iσyηy(b + b†) + σzηz(b − b†)

≡ η̂0,y + η̂e + η̂x + η̂y + η̂z (9)

where the parameters η0,y , ηe, ηx, ηy and ηz are 	-dependent and will be specified later.
The above generator represents the most general anti-Hermitian operator which includes

all possible operators acting on the underlying Hilbert space up to linear bosonic operators
with real coefficients.

2.2.1. Setting up the flow equations. The commutator [η,H ] yields the following
contributions:

[η̂0,y,H ] = −σz�η0,y − σxεη
0,y + σzη0,yλx(b + b†)− σxη

0,yλz(b + b†) (10)

[η̂e, H ] = ηeω0(b + b†) + ηeλe + σxηeλx + σzηeλz (11)

[η̂x,H ] = −iσyεηx(b − b†) + σxηxω0(b + b†) + σxηxλe + ηxλx

− σzηxλy(b − b†)2 − iσyη
x λ

z

2
{(b − b†), (b + b†)} (12)

[η̂y,H ] = −σz�ηy(b + b†)− σxεη
y(b + b†) + iσyηyω0(b − b†)

+ σzη
yλx(b + b†)2 + ηyλy − σxη

yλz(b + b†)2 (13)

[η̂z,H ] = −iσy�ηz(b − b†) + σzηzω0(b + b†) + σzη
zλe

+ iσyηz
λx

2
{(b − b†), (b + b†)} + σxηzλy(b − b†)2 + ηzλz. (14)

{·, ·} denotes the anti-commutator. As can be seen in (12)–(14), the flow equations
generate terms which are bilinear in the bosonic operators and we will need to find a suitable
procedure to include these terms in the flow. Kehrein et al [3] proposed to neglect these terms
after normal ordering them with respect to a bilinear bosonic Hamiltonian. Since we allow
the initial Hamiltonian to differ by a shift in the bosonic operators, we need to include this
generalization also in the normal ordering procedure, i.e. we will normal order with respect to
the shifted bosonic mode

b̄ ≡ b +
δ

2
(15)

with the linear shift δ to be determined later. To close the flow equations we will thus neglect
the normal ordered operators

O1 = −σxηyλz : (b̄ + b̄†)2 : O2 = σzη
yλx : (b̄ + b̄†)2 : (16)

O3 = σxη
zλy : (b̄ − b̄

†
)2 : O4 = −σzηxλy : (b̄ − b̄

†
)2 : (17)

O5 = iσy

(
ηz
λx

2
− ηx

λz

2

)
: {(b̄ − b̄

†
), (b̄ + b̄†)} : . (18)
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Normal ordering is now defined as : (b̄ + b̄
†
)2 : ≡ (b̄ + b̄

†
)2 − 1n, with 1n ≡ 〈(b̄ + b̄

†
)2〉 =

1 + 2n, and n = (eβω0 − 1)−1 being the Bose factor. Note that the temperature enters in the
Hamiltonian flow through normal ordering. In the following we will only consider T = 0, i.e.
1n = 1, but we will nevertheless keep track of this distinction.

As in the case of flow equations for impurity systems [5], the above truncation scheme
has the effect that the bosonic energy ω0 is not being renormalized during the flow.

With dH
d	 = [η,H ] we obtain the following flow equations:

∂	� = 2εη0,y − 2ηeλx − 2ηxλe + 2(ηzλy + ηyλz)1n − 2ηyλzδ2 (19)

∂	ε = −2�η0,y + 2ηzλe + 2(ηyλx + ηxλy)1n + 2ηeλz − 2ηyλxδ2 ∂	λ
e = 2ηeω0 (20)

∂	λ
x = −2εηy + 2ηxω0 − 2η0,yλz + 4ηyλzδ

(21)
∂	λ

y = −2�ηz − 2εηx + 2ηyω0 − 2ηzλxδ + 2ηxλzδ

∂	λ
z = −2�ηy + 2ηzω0 + 2η0,yλx − 4ηyλxδ ∂	E = ηeλe + ηxλx + ηyλy + ηzλz. (22)

With λe = ηe = 0, an obvious invariant is given by Inv = �2 +ε2 +λx 2 +λy 2 +λz2 −4Eω0. To
investigate the flow equations further, one has to specify the constants and initial conditions.
To do so we will choose different diagonal HamiltoniansH0, and we will contrast the resulting
flow equations by means of the ground-state energy of the system.

2.2.2. Determining the canonical generator. An obvious choice for the diagonal Hamiltonian
is given by H0 = −�

2 σx + ω0b
†b. The canonical generator η = [H0,H ] is of the

form (9) with η0,y = �ε/2, ηe = −ω0λ
e/2, ηx = −ω0λ

x/2, ηy = (�λz − ω0λ
y)/2 and

ηz = (−ω0λ
z +�λy)/2. We will refer to the flow equations with this particular choice of η as

version a.
Another choice for the diagonal Hamiltonian is given by H0 = ε

2σz + ω0b
†b. The

canonical generator η = [H0,H ] is of the form (9) with η0,y = −�ε/2, ηe = −ω0λ
e/2, ηx =

(−ω0λ
x + ελy)/2, ηy = (ελx − ω0λ

y)/2 and ηz = −ω0λ
z/2. We will refer to the flow

equations with this particular choice of η as version b.
The third choice for the generator which we will investigate in the following combines

the two previous choices, i.e. η = [H0,H ] with H0 = −�
2 σx + ε

2σz + ω0b
†b. The canonical

generator η is of the form (9) with η0,y = 0, ηe = −ω0λ
e/2, ηx = (−ω0λ

x + ελy)/2, ηy =
(�λz + ελx − ω0λ

y)/2 and ηz = (−ω0λ
z +�λy)/2. We will refer to the flow equations with

this particular choice of η as version c.
There are other possibilities for the diagonal Hamiltonian which include coupling terms.

We could, e.g., choose H0 = ω0b
†b + σz λ

z

2 (b + b†), since this Hamiltonian is also exactly
solvable, see appendix A. Another possibility is to choose the Jaynes–Cummings Hamiltonian
as H0 [18] (see also appendix D), which was done by Richter [11]. In this work though, we
want to confine ourselves to the versions given above.

2.2.3. Determining the bosonic shift. We now want to determine the newly introduced
bosonic shift δ. The procedure is not unambiguous, but we are led by formally diagonalizing
the Hamiltonian as follows:

H = −�
′

2
σx +

ε ′

2
σz + ω0

(
b† +

∑
j

σj
λj

2ω0
+ iσy

λy

2ω0

)(
b +

∑
j

σj
λj

2ω0
− iσy

λy

2ω0

)
+ E′

(23)
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with�′ ≡ � + λeλx

ω
− λyλz

ω
, ε ′ ≡ ε − λeλz

ω
− λxλy

ω
and E′ ≡ E − λiλi

4ω − λyλy

4ω and summation is
over j = e, x, z with σe ≡ 1. Decoupling the fermionic and bosonic Hilbert space, we thus
obtain the 	-dependent shift

δ =
∑
j

〈σj 〉λ
j

ω0
. (24)

The fermionic expectation values can be evaluated directly with respect to the effective
HamiltonianHp = −�′

2 σx + ε′
2 σz to yield

〈σx〉 = �′/R′ 〈σz〉 = −ε ′/R′ with R′2 ≡ �′2 + ε ′2. (25)

There is also a self-consistent possibility to determine the system expectation values. For
that we will formulate the Hamiltonian with respect to the shifted mode b̄ = b + δ/2. The
renormalized ‘one-particle’ parameters are then given by

�̄ ≡ � + λxδ ε̄ ≡ ε − λzδ. (26)

Evaluating the system parameters now with respect to the system Hamiltonian Hp =
− �̄

2 σx + ε̄
2σz and still assuming the bosonic shift as given in equation (24), we obtain the

following self-consistent equations:

〈σx〉 = �̄/R̄ 〈σz〉 = −ε̄/R̄ with R̄2 ≡ �̄2 + ε̄2. (27)

In this work, we will restrict our investigation to the bosonic shift of (24) and to these two
procedures of determining the fermionic expectation values. But there are other possibilities
of evaluating the bosonic shift or the expectation values. One way is, e.g., to couple the flow
of the system parameters with the flow of the observable by imposing that a certain sum rule
holds exactly (see the next section). This condition will determine the bosonic shift. In the
next section we show that the sum rule for the x- and z-components of the Pauli matrices is
quadratic in the bosonic shift. But since we restricted ourselves to real shifts, there might be
no solution. Even if we allowed imaginary coefficients in the evolution of the Hamiltonian,
a solution would not be guaranteed since the sum rule would then relate the complex shift
δ with its complex conjugate δ∗. Numerical investigations indicated that the bosonic shift δ
cannot be chosen such that a certain sum rule holds exactly. The question of how this affects
the stability and reliability of the flow equation approach is left open.

Finally, we want to point out that the procedure of determining the expectation values can
significantly alter the behaviour of the flow equations. In case of the spin–boson model it is
shown [19], that an infinitesimal bias resembles a relevant perturbation, i.e. ∂	ε ∝ ε for small
	, if one chooses the expectation values directly whereas it resembles a irrelevant perturbation
(∂	ε ∝ −ε) if one chooses the self-consistent scheme.

2.2.4. Numerical results. We want to analyse the quality of the above flow equations
by means of the ground-state energy Eg of the system as a function of the external bias
ε0. These results are compared with the numerically exact solution obtained via numerical
diagonalization. Since the bosonic mode is left un-renormalized, the energy scale is given by
ω0. For the coupling constant we choose λ0 = ω0, i.e. we are not in the perturbative regime.

We will first consider the flow of the initial Hamiltonian with θ = 0 and ψ = 0. We
will also set δ = 0 for all 	. In figure 1 the ground-state energies EFE

g obtained from the
different canonical generators are shown. Calculations are done for two different tunnel-
matrix elements �0/ω0 = 0.5 (left-hand side) and �0/ω0 = 1.5 (right-hand side), the first
below and the second above resonance. Resonance in the unperturbed system is defined by
�0/ω0 = 1. All results are in good agreement with the numerically exact solution. Still,
differences occur in the non-trivial regime where the bias ε0 is below or around the energy
scale given by ω0. In the panels, the exact ground-state energies Eexg are displayed.
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Figure 1. The ground-state energy EFE
g obtained by different canonical generators with ψ = 0

and θ = 0 for �0/ω0 = 0.5 (left-hand side) and �0/ω0 = 1.5 (right-hand side) with λ0/ω0 = 1
as a function of the bias ε0 relative to the exact ground-state energy Eex

g , shown in the panel. The
bosonic shift is set to zero throughout the flow, i.e. δ = 0 for all 	.

We now turn to the flow equations obtained by employing the generalized normal ordering
procedure, i.e. we set δ = ∑

j 〈σj 〉λj/ω0. The results for the different generators are shown in
figure 2. The expectation values are determined directly according to equations (25) (left-hand
side) and self-consistently according to equations (27) (right-hand side). There is a systematic
improvement in the results of figure 1, where δ was set zero for all 	. The best results are
obtained by the generator of version b and determining the expectation values self-consistently.

Finally, we want to investigate the dependence of the flow equations on the unitarily
equivalent, but different representations of the initial Hamiltonian, labelled by ψ and θ . For
this we choose the generator of version b and the bosonic shift of (24) with the direct evaluation
of the expectation values according to equations (25). On the left-hand side of figure 3 we
vary ψ with θ = 0; on the right-hand side of figure 3 we vary θ with ψ = 0.

As can be seen, there are differences with respect to the initial Hamiltonian. Forψ = π/4,
there is a big deviation from the exact value in a small region around ε0 ≈ 1.5 with a maximum
of 1.2. In this region the fixed point Hamiltonian H(	 = ∞) varies from the ‘normal’ fixed
point Hamiltonian and the ground-state energy is mostly determined by E(	 = ∞). This is
also the case for θ � −1 (not shown) where the regions of large deviations depend on θ .
Still, we observe a certain invariance with respect to the initial Hamiltonian keeping the crude
truncation scheme in mind.

From the considered parameters, the best results are obtained forψ = 0 and θ = −0.5. Of
course, it would be desirable to give an objective scheme on how to choose the representation
of the initial Hamiltonian that yields the best result for the ground-state energy. This had to
be left open.

2.3. Flow equations with respect to a form-invariant flow

As mentioned above, the canonical generator η = [H0,H ], in general, gives rise to new
interaction terms. In order to avoid this complication, Kehrein et al pursued a different strategy
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Figure 2. The ground-state energy EFE
g obtained by different canonical generators withψ = 0 and

θ = 0 for�0/ω0 = 1.5 with λ0/ω0 = 1 as a function of the bias ε0 relative to the exact ground-state
energy Eex

g , shown in the panel. The expectation values for the bosonic shift δ = ∑
j 〈σj 〉λj /ω0

were evaluated directly according to equations (25) (left-hand side) and self consistently according
to equations (27) (right-hand side).

0 2 4 6 8
ε0/ω0

0.99

0.995

1

1.005

E
gF

E
/E

gex

ψ = 0
ψ = π/4
ψ = π/2
ψ = 3π/4

0 2 4 6 8
ε0/ω0

0.995

1

E
gF

E
/E

gex

θ = -0.5
θ = 0
θ = 0.5
θ = 1

0 2 4 6 8
ε0/ω0

-4

-2

0

E
gex

0 2 4 6 8
ε0/ω0

-4

-2

0

E
gex

Figure 3. The ground-state energy EFE
g obtained by the canonical generator of version b for

�0/ω0 = 1.5 and λ0/ω0 = 1 as a function of the bias ε0 relative to the exact ground-state energy
Eex
g , shown in the panel. The expectation values for the bosonic shift δ = ∑

j 〈σj 〉λj /ω0 were
evaluated directly according to equations (25). The initial values were θ = 0 and various ψ
(left-hand side) and ψ = 0 and various θ (right-hand side).

to set-up the flow equations, namely they chose the generator η such that the Hamiltonian
remains form-invariant. To assure that the initial Hamiltonian of equation (1) remains form-
invariant, we set δ = 0, and the constants of the generator of equation (9) have to satisfy the



2716 T Stauber and A Mielke

following relations:

ηe = 0 −εηy + ηxω0 − η0,yλz = 0 −�ηz − εηx + ηyω0 = 0. (28)

This guarantees that λe, λx and λy are not being generated. With these relations, the
parameters are defined up to a common factor f . If one chooses ηz = −ω0λ

zf/2, one
finds η0,y = ε�f/2, ηe = 0, ηx = 0 and ηy = −�λzf/2. With this choice, all neglected
operators except of O1 vanish. One obtains the following coupled differential equations:

∂	� = −�λz2f 1n +�ε2f ∂	ε = −ε�2f

∂	λ
z = λz

(
�2 − ω2

0

)
f ∂	E = −ω0λ

z2f/2.
(29)

For the numerical calculations, we set f = 1 and refer to this set of flow equations as
version d.

We want to consider the form-invariant flow after having performed a unitary
transformation on the two-dimensional Hilbert space which diagonalizes Hp = −�0

2 σx +
ε0
2 σz → R

2 σz with R2 = �2
0 + ε2

0 . This is achieved by choosing tanψ = −�0/ε0. If we
thus want to avoid the generation of �,λe and λy as defined in (8), we set δ = 0, and the
parameters of the generator have to satisfy the following conditions:

Rη0,y + ηyλz1n = 0 ηe = 0 −�ηz − Rηx + ηyω0 = 0. (30)

Again the parameters of the generator are only defined up to a common factor. Choosing
ηe = 0, ηx = −ω0λ

xf/2, ηz = −ω0λ
zf/2 renders O5 zero and yields η0,y = λxλzf 1n/2

and ηy = −Rλxf/2. Thus all neglected operators but O1 and O2 are zero. We obtain the
following flow equations:

∂	R = −Rλx 2f 1n ∂	E = −ω0(λ
x2 + λz2)f/2

∂	λ
x = −ω2

0λ
xf + R2λxf − λz2λxf 1n ∂	λ

z = −ω2
0λ
zf + λx2λzf 1n.

(31)

The set of equations in (31) is equivalent to the set of equations in (29). This can be seen
by introducing ‘new’ variables �′ = λxR/λ′, ε ′ = λzR/λ′ and λ′2 = λx2 + λz2 and setting
up their differential equations, which coincide with (29). This demonstrates that keeping the
Hamiltonian form-invariant during the flow preserves the unitary equivalence with respect to
the initial Hamiltonian for this special unitary transformation.

If we want the initial Hamiltonian to remain form-invariant during the flow after having
shifted the bosonic mode by θ , the constants have to satisfy the following relations:

−εηy + ηxω0 − η0,yλz + 2ηyλzδ = 0 (32)

−�ηz − εηx + ηyω0 + 2ηxλzδ = 0. (33)

After the shift, λe is naturally generated which was not present in the previous schemes.
In order to compare the flow equations with the above versions, we have to couple the flow
of λe with the flow of λz, i.e. λe = θλz. This sets another condition on the parameters of
the generator, i.e. ηe = −θ�ηy/ω0 + θηz. If we further choose ηy = −�λzf/2 we obtain
ηz = −ω0λ

zf/2, ηx = 0, η0,y = ε�f/2 −�λzδf and ηe = θ�2λzf/(2ω0)− θω0λ
zf/2 with

the factor f to be determined later. With ε̄ = ε − θλz2/ω0, this yields the following flow
equations:

∂	� = −�λz2
f 1n +�(ε̄ + λz(δ − θλz/ω0))

2f ∂	ε̄ = −�2ε̄f + 2�2λz(δ − θλz/ω0)f

∂	λ
z = λz

(
�2 − ω2

0

)
f ∂	E = −ω0λ

z2
f/2 + θ2 (�2 − ω2

0

)
λz

2
f/(2ω0).

(34)
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Figure 4. The ground-state energy EFE
g obtained from the form-invariant flow for �0/ω0 = 0.5

(left-hand side) and �0/ω0 = 1.5 with λ0/ω0 = 1 as a function of the bias ε0 relative to the
exact ground-state energy Eex

g , shown in the panel. The primed versions include the flow of the
neglected operators O1 and O2 (see the text).

Recalling the initial condition of the energy shift E′
0 = E0 + θ2λ2

0

/
(4ω0) defined in

equation (7) we see that the flow equations are equivalent to the flow equations of version d if
we set f = 1 and δ = λe/ω0 = θλz/ω0. This choice of the 	-dependent shift coincides with
the expression (24) if we set 〈σz〉 = 0.

This is a remarkable result. It shows that if one imposes invariance of the flow equations
with respect to unitarily equivalent initial Hamiltonians and chooses the truncation scheme
that leaves the Hamiltonian form-invariant, the flow equations are uniquely determined. It
also shows that normal ordering with respect to the 	-dependent mode b̄ = b + δ leads to
reasonable results.

We now want to check the quality of the form-invariant truncation scheme. In figure 4 the
ground-state energy EFE

g obtained by the set of equations (29) is shown relative to the exact
ground-state energy Eex

g for two different tunnel-matrix elements �0/ω0 = 0.5 (left-hand
side) and �0/ω0 = 1.5 (right-hand side). Drastic deviations from the exact result are seen in
the regime ε0/ω0 � 1. This means that the neglected operator O1 of equation (16) becomes
relevant and has to be taken into account.

In order to demonstrate that the flow equations can be improved systematically, we
will now consider higher order terms of the bosonic operators in their normal ordered
representation. For the normal ordering procedure see appendix E. Since we set δ = 0
for all 	, normal ordering is defined with respect to the unshifted mode, i.e. b̄ = b. Redefining
O1 ≡ σxκ1 : (b + b†)2 :, the commutator [η,O1] yields

[η,O1] = 2σzη
y,0κ1 : (b + b†)2 : +2σzη

yκ1(: (b + b†)3 : +2〈(b + b†)2〉 : (b + b†) :)

+ 2iσyηzκ1 : (b − b†)(b + b†)2 : . (35)

We first neglect the trilinear operators and the bilinear operator of type O2 (see equation (16)).
The extended flow equations then read (f = 1)
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∂	� = −�λz21n +�ε2 ∂	ε = −ε�2 ∂	κ1 = �λz
2
/2

(36)
∂	λ

z = λz
(
�2 − ω2

0

)
+ 4λz�κ11n ∂	E = −ω0λ

z2
f/2.

We will refer to this set of flow equations as version d′.
To see if this improvement is systematic we will now also include the corrections that

come from the neglected operator of type O2. Redefining O2 ≡ σzκ2 : (b + b†)2 :, we obtain
similar commutator relations for [η,O2] as in (35):

[η,O2] = −2σxηy,0κ2 : (b + b†)2 : −2σxηyκ2(: (b + b†)3 : +2〈(b + b†)2〉 : (b + b†) :)

− 2iσyηzκ2 : (b − b†)(b + b†)2 : . (37)

The effect of including the operator O2 in the flow equations is the following: The conditions
for the constants of the generator that assure the form-invariance of the Hamiltonian slightly
change, see equation (28). The flow equations thus read (f = 1)

∂	� = −�λz21n +�ε(ε + 4κ2) ∂	ε = −(ε + 4κ2)�
2

∂	λ
z = λz

(
�2 − ω2

0

)
+ 4λz�κ11n ∂	E = −ω0λ

z2f/2

∂	κ1 = �λz2/2 −�(ε + 4κ2)κ2 ∂	κ2 = �(ε + 4κ2)κ1.

(38)

We will refer to this set of flow equations as version d′′.
In figure 4 one sees that the extended flow equations yield a systematic improvement

ranging over the whole parameter space. Nevertheless, the agreement with the exact result
remains rather poor for ε0/ω0 � 1. Only if one considers the renormalization of the bath
mode ω0, one obtains results within a few per cent relative error over the whole parameter
range. Regarding the spin–boson model, it is preferable to employ the canonical generator
since the bath modes remain unrenormalized in the thermodynamic limit [20].

3. Flow of observables

We will now investigate the flow of observables. In order to characterize the quality of the
flow equations, normally sum rules are derived expressing the fact that σ 2

i = 1 or (anti-)
commutation relations should hold for all 	 with i = x, y, z [5, 7]. As will be pointed out
at the end of this section, these sum rules can be misleading. We will therefore contrast the
expectation value 〈σz〉 as it follows from the flow equation approach with the numerically
exact solution. Furthermore, we will compare the flow equation results with the numerically
exact fixed point of the operator flow on the operator level. To do so, we will give a unique
decomposition of the fixed point operator into a basis of normal ordered bosonic operators.

3.1. Flow equations for the Pauli matrices

In order to take advantage of the simple form of the fixed point Hamiltonian when calculating
expectation values of observables, the observable has to be subjected to the same sequence of
unitary transformations as the Hamiltonian. The flow equations for the Pauli spin matrices
thus read ∂	σi = [η, σi]. Again the flow equations generate an infinite series of operators and
one needs a suitable truncation and decoupling scheme. The ith-component of the Pauli spin
matrices as a function of the flow parameter 	 shall be given by

σi(	) = gi(	)σx + hi(	)σz + fi(	) + σxχ
x,i (	)(b + b†)

+ iσyχy,i (	)(b − b†) + σzχz,i (	)(b + b†) (39)
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with i = x, z. We want to emphasize that the constant term fi is indeed generated even though
it seems to contradict the theorem of the invariance of the trace under unitary transformations.
A short discussion is given in appendix B.

The flow of the y-component of the Pauli spin matrices is given by

iσy(	) = gy(	)iσy + σxχx,y (b − b†) + σzχz,y (b − b†). (40)

These are the most general expansions up to linear bosonic operators with real coefficients that
can evolve from the Pauli spin matrices under the flow equations, i.e. from σi(	 = 0) = σi .

The commutator [η, σi] with i = x, z yields the following contributions:

[η0,y, σi(	)] = 2σzgiη0,y − 2σxhiη0,y + 2σzη0,yχx,i (b + b†)− 2σxη0,yχz,i (b + b†) (41)

[ηe, σi(	)] = 2σxηeχx,i + 2σzηeχz,i (42)

[ηx, σi(	)] = −2iσyhiηx(b − b†) + 2ηxχx,i − 2σzηxχy,i (b − b†)2

− iσyηxχz,i{(b − b†), (b + b†)} (43)

[ηy, σi(	)] = 2σzgiηy(b + b†)− 2hiσxηy(b + b†)

+ 2σzηyχx,i (b + b†)2 + 2ηyχy,i − 2σxηyχz,i (b + b†)2 (44)

[ηz, σi(	)] = 2iσygiηz(b − b†) + iσyηzχx,i{(b − b†), (b + b†)}
+ 2σxη

zχy,i (b − b†)2 + 2ηzχz,i . (45)

The commutator [η, iσy] is given by

[η0,y, σy(	)] = 2σzη
0,yχx,y (b − b†)− 2σxη

0,yχz,y (b − b†) (46)

[ηx, σy(	)] = −2σzgyηx(b − b†)− 2iσyηxχz,y(b − b†)2 (47)

[ηy, σy(	)] = σzη
yχx,y{(b + b†), (b − b†)} − σxη

yχz,y{(b + b†), (b − b†)} (48)

[ηz, σy(	)] = 2σxgyη
z(b − b†) + 2iσyη

zχx,y(b − b†)2. (49)

Again, {. , .} denotes the anti-commutator. To understand which operators can transform
into one another, we give a list of operators and their behaviour under parity transformation
(P) and Hermitian conjugation (H) (x ≡ (b + b†), p ≡ (b − b†)):

1 σx iσy σz x p σxx σxp iσyx iσyp σzx σzp

P + + − − + − − − + + + +
H + + − + + − + − − + + −

.

In order to close the flow equations, we neglect normal ordered bosonic bilinears where
normal ordering is defined with respect to the shifted bosonic mode b̄ = b + δ/2. Thus, one
obtains the following set of linear differential equations for the ith-component of the Pauli
spin matrices with i = x, z:

∂	gi = −2hiη0,y + 2ηeχx,i − 2ηzχy,i1n − 2ηyχz,i1n + 2ηyχz,iδ2 (50)

∂	hi = 2giη
0,y + 2ηyχx,i1n + 2ηxχy,i1n + 2ηeχz,i − 2ηyχx,iδ2 (51)

∂	fi = 2ηxχx,i + 2ηyχy,i + 2ηzχz,i (52)

∂	χ
x,i = −2hiηy − 2η0,yχz,i + 4ηyχz,iδ (53)

∂	χ
y,i = 2giη

z − 2hiη
x + 2ηxχz,i δ − 2ηzχx,i δ (54)

∂	χ
z,i = 2giηy + 2η0,yχx,i − 4ηyχx,i δ. (55)
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The flow equations for the y-component read

∂	gy = −2ηzχx,y1n + 2ηxχz,y1n (56)

∂	χ
x,y = 2gyηz − 2η0,yχz,y − 2ηyχz,yδ

(57)
∂	χ

z,y = −2gyη0,yx + 2η0,yχx,y − 2ηyχx,yδ.

If no approximation was made, σ 2
i (	) = 1 would hold for all 	 and i = x, y, z. Taking the

expectation value with respect to the bilinear Hamiltonian of the shifted modes the relation
should hold approximately for i = x, z:〈
σ 2
i (	)

〉 = g2
i + h2

i + f 2
i + (χx,iχx,i + χy,iχy,i + χz,iχz,i )1n + 2(gi〈σx〉 + hi〈σz〉)fi

+ 2(χx,i〈σz〉 − χz,i〈σx〉)χy,i + (χx,iχx,i + χz,iχz,i )δ2

− 2((g + 〈σx〉f )χx,i + (h + 〈σz〉f )χz,i )δ ≈ 1. (58)

For the y-component we obtain〈
σ 2
y (	)

〉 = g2
y + (χx,yχx,y + χz,yχz,y)1n ≈ 1. (59)

Other conservation relations follow, e.g., from the commutator [σx(	), σz(	)] = −2iσy(	).
These relations can be used to assess the validity and the quality of the flow equations but
they cannot assure whether the scheme will yield the correct results. We will comment on this
point at the end of this section.

3.2. Numerical results for the expectation value of σ z

Measurable quantities other than the ground-state energy are determined by means of the
operator flow. In this subsection we will discuss the expectation value 〈σz〉 as it follows from
the different versions of the flow equation approach. The expression is given by

〈σz〉 = ∗〈σz(	 = ∞)〉∗ = g(	 = ∞)∗〈σx〉∗ + h(	 = ∞)∗〈σz〉∗ + f (	 = ∞). (60)

Here, ∗〈· · ·〉∗ denotes the ground-state expectation value with respect to the fixed point
HamiltonianH(	 = ∞).

In figure 5 we contrast the results for the different generators which were discussed in the
last section, 〈σz〉FE, with the numerically exact solution 〈σz〉ex. We choose ψ = 0 and θ = 0
for the initial Hamiltonian and we will employ the flow equations obtained by the generalized
normal ordering procedure, i.e. δ = ∑

j 〈σj 〉λj/ω0.
On the left-hand side of figure 5, the expectation values in the expression of δ are

determined directly according to equations (25). On the right-hand side of figure 5, the
expectation values are evaluated self-consistently according to equations (27). For ε0/ω0 � 1,
the best results are obtained by the generator of version b with the direct evaluation of the
expectation values. But deviations from the exact solution in the region ε0/ω0 � 1 are
significant. In the latter region the generator of version c yields the best results. We recall that
the ground-state energy was best approximated by the generator of version b with the self-
consistent evaluation of the expectation values entering the bosonic shift δ. This demonstrates
that the ‘best’ generator and ‘best’ procedures of taking account of the neglected terms might
depend on the physical quantity under consideration.

We will now also include the initial unitary transformation on the two-dimensional spin-
Hilbert space, labelled by ψ and the initial bosonic shift θ in our discussion. We will use
the generator of version c with direct evaluation of the expectation values. On the left-hand
side of figure 6, we vary ψ with θ = 0; on the right-hand side of figure 6 we vary θ with
ψ = 0.
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Figure 5. The expectation value 〈σz〉FE obtained by different canonical generators with ψ = 0
and θ = 0 for �0/ω0 = 1.5 with λ0/ω0 = 1 as a function of the bias ε0 relative to the
exact expectation value 〈σz〉ex, shown in the panel. The expectation values for the bosonic shift
δ = ∑

j 〈σj 〉λj /ω0 were evaluated directly according to equations (25) (right-hand side) and
self-consistently according to equations (27) (left-hand side).
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Figure 6. The expectation value 〈σz〉FE obtained by the canonical generator of version c with
δ = ∑

j 〈σj 〉λj /ω0 for �0/ω0 = 1.5 and λ0/ω0 = 1 as a function of the bias ε0 relative to the
exact expectation value 〈σz〉ex, shown in the panel. The parameters of the initial Hamiltonian are
given by θ = 0 and various ψ (left-hand side) and ψ = 0 and various θ (right-hand side).

Regardless of the initial Hamiltonian, the flow equation results differ from the exact
solution in the region ε0/ω0 � 2. But some initial Hamiltonians provoke more significant
deviations than others. Good results over the whole parameter space are obtained by combining
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N

N

Figure 7. Left-hand side: matrix structure of a normal ordered bosonic operator consisting of
N bosonic operators with respect to the canonical basis (see the text). The dark area indicates
non-zero entries. Right-hand side: the dark area indicates the matrix elements of an arbitrary
matrix which are uniquely determined by normal ordered operators consisting of up to a certain
number of bosonic operators (see the text).

non-zero values of ψ and θ which ‘compensate’ their errors, e.g., ψ = π/32 and θ = −0.2.
Nevertheless, we were not able to give an objective procedure of how to choose the optimal
initial Hamiltonian a priori.

3.3. Operator fixed point

It is possible to compare the exact results with the flow equation approach not only on the
spectral but also on the operator level. For this we have to diagonalize the Hamiltonian in this
basis in which the corresponding ‘diagonal’ HamiltonianH0 of the flow equation approach is
diagonal. Let HD = UHU † denote the diagonalized Hamiltonian, then σ ∗

i = UσiU
† is the

operator to be compared with σi(	 = ∞) stemming from the flow equation approach, with
i = x, y, z. To do so we will decompose σ ∗

i into a set of operators which are created by the
corresponding flow equations.

If one uses an expansion which is normal ordered in the bosonic operators the
decomposition can be obtained numerically without any approximation2. The reason for
this is that the bosonic ladder operators cannot compensate each other and then act on lower
bosonic subspaces. To make this more explicit the general matrix structure of a normal ordered
operator consisting of N bosonic operators is shown on the left-hand side of figure 7, taking
the set {|ν〉} as basis with |ν〉 ≡ (b†)ν/

√
ν!|0〉 and b|0〉 = 0, ν being a positive integer. The

dark area contains non-zero entries whereas the white area contains no entries. In the case
of a non-normal ordered operator the white, upper left triangle would also contain non-zero
entries.

As an explicit choice of the operator basis for real symmetric operators such as σx and σz
we choose the set {o : (b + b†)n(b− b†)2m :, o′ : (b + b†)n

′
(b− b†)2m′+1 :}, where o = 1, σx, σz

and o′ = iσy . The operator basis for real antisymmetric operators is obtained by interchanging
o and o′. In the following we will only consider the flow of real symmetric operators. The
results also hold for the real antisymmetric case.

2 We neglect errors resulting from the truncation of the Hilbert space.



Flow equations for Hamiltonians: contrasting different approaches 2723

We want to decompose a real symmetric operator into a set of finite operators.
Considering all operators of the basis given above with less than or equal to 2N-bosonic
operators, we obtain a finite basis of 3

∑N
m=0

∑2(N−m)
n=0 +

∑N
m′=0

∑2(N−m′)
n′=1 = (N + 1)(4N + 3)

operators. Summing up the independent matrix elements which are uniquely determined by the
normal ordered operators containing up to 2N-bosonic modes, we obtain

∑N
n=0 2(4n+1)+1 =

4(N + 1)N + 3(N + 1) = (N + 1)(4N + 3). These independent matrix elements are located at
the upper left triangle of the matrix, indicated as the dark area on the right-hand side of figure 7.

In order to complete the discussion we also consider all operators with less than or
equal to (2N + 1)-bosonic operators. We then obtain a basis with 3

∑N
m=0

∑2(N−m)+1
n=0 +∑N

m′=0

∑2(N−m′)
n′=0 = (N + 1)(4N + 7) operators. Summing up the independent matrix elements

which are uniquely determined by the normal ordered operators containing up to (2N + 1)-
bosonic modes, we obtain

∑N
n=0 2(4n + 3) + 1 = 4(N + 1)N + 7(N + 1) = (N + 1)(4N + 7).

We thus obtain the same number of independent matrix elements and basis ‘vectors’. This
confirms that our basis is complete and linearly independent as we take N → ∞. Secondly,
this shows that the first (N + 1)(4N + 3) coordinates of a real symmetric operator with respect
to a finite basis of operators up to 2N-bosonic operators are left unchanged if one goes over
to a finite basis including (2N +M)-bosonic operators (M > 0).

We can thus exactly determine the coefficients of our basis up to any number of bosonic
excitations N which σ ∗

i is composed of. This shows that choosing a set of normal ordered
bosonic operators as a basis yields a systematic approximation of any operator. If one is
only interested in the system dynamics at low energies, it thus suffices to consider only up to
N-bosonic operators with say N = 2.

To determine the coefficients numerically one has to work with a specific basis. Up to now
we have only specified the basis of the bosonic Hilbert space. ChoosingH0 = −�0

2 σx+ω0b
†b to

be diagonal we are led to the basis {|e, ν〉} with the first quantum number e = 0, 1 denoting the
eigenstates of σx and the second quantum number denoting the eigenstates of b†b. Choosing
H0 = ε

2σz + ω0b
†b (version 1b) or the diagonalized representation H0 = R

2 σz + ω0b
†b of

version 1c, we would choose the first quantum number e = 0, 1 to denote the eigenstates
of σz.

Considering all operators with less than or equal to 2N-bosonic operators, we end up
solving a linear equationAx = b, with A being a quadratic matrix and x, b being vectors with
dimensions (N + 1)(4N + 3). The coefficients of the matrix A are obtained by the following
matrix representations of normal ordered bosonic operators:

〈e, µ|o : (b + b†)n(b − b†)2m : |e′, ν〉 = 〈e|o|e′〉
n∑
k=0

(
n

k

) 2m∑
l=0

(
2m

l

)
(−1)2m−l

×�(ν − k − l)

√
µ!

(N − k − l)!

√
ν!

(N − k − l)!
δµ,ν+n+2(m−k−l). (61)

The vector b on the right-hand side of the linear equation is given by the (N + 1)(4N + 3)
independent matrix elements, located at the dark area of the matrix on the right-hand side of
figure 7.

3.4. Higher orders

In the expansion of the Pauli spin matrices of the last section we have neglected all generated
operators with more than one bosonic operator. In order to confirm that the expansion of the
Pauli spin matrices in normal ordered bosonic operators is indeed systematic we will now
upgrade our expansion and also include:
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• all generated operators up to two normal ordered bosonic operators
• all generated operators up to three normal ordered bosonic operators

In the following, normal ordering shall be defined with respect to the bilinear Hamiltonian
of the unshifted mode, i.e. δ = 0. This will simplify matters considerably. Choosing the
parameters of the initial Hamiltonian such that δ = 0 for all 	, we are still consistent within
our normal ordering procedure.

The first extension, σ new,2
z , includes the following terms, where we introduce the

abbreviations x ≡ b + b† and p ≡ b − b† and where we also confine ourselves to the
discussion of σz in order to drop one index:

σ new,2
z = χ1x + σxψ

x,+ : x2 : +iσyψ
y,+ : xp : +σzψ

z,+ : x2 : +σxψ
x,− : p2 : +σzψ

z,− : p2 : .

(62)

The second extension, σ new,3
z , consists of the following terms:

σ new,3
z = ψ1,+ : x2 : +ψ1,− : p2 : +σxϕ

x,+ : x3 : +iσyϕ
y,+ : x2p :

+ σzϕz,+ : x3 : +σxϕx,− : xp2 : +iσyϕy,− : p3 : +σzψz,− : xp2 : . (63)

The resulting flow equations for the upgraded truncation schemes are presented in
appendix C.

3.5. Numerical results

We are now set to compare the fixed points of the operator flow obtained from the flow equation
approach with the exact results. We can also see from the exact solution if the expansion into
normal ordered bosonic operators is preferable.

It turns out that the expansion into normal ordered operators is not without obstacles.
Especially when the reflection symmetry is broken, i.e. ε0 �= 0, the final values of the
coefficients delicately depend on the initial parameters of the Hamiltonian. The reason for
this is that the unperturbed states cross when the interaction is switched on and this affects
the representation of the operator. The effect is enhanced by explicitly breaking certain
symmetries.

Also the comparison of the operator flow with respect to the different versions of the flow
equations, discussed in the previous section, is troublesome. Since the non-trivial versions for
ε = 0 are based on different diagonal HamiltoniansH0, a direct comparison of the fixed point
parameters is not obvious.

We therefore limit our investigations to the parameter regime where the reflection
symmetry is not broken, i.e. ε0 = 0. If we choose the generator of version a with ψ = 0 and
θ = 0, δ = 0 for all 	, and if we consider the flow of the z-componentof the Pauli spin matrices,
only two parameters hz and χx,z are being renormalized. The final values h∗

z ≡ hz(	 = ∞)

and χx,z∗ ≡ χx,z(	 = ∞) are shown for the initial condition λ0/ω0 = 0.5 in figure 8, together
with the results where we also included the flow of bilinear (second order) and trilinear
(third order) bosonic operators, governed by equations (C4)–(C13) and equations (C14)–
(C27).

The fixed point coefficients h∗
z and χx,z∗ agree with the exact solution unless the initial

tunnel-matrix element �0 is close to a resonance, i.e. �0 ≈ ω0 or �0 ≈ 3ω0.3 The spike at
�0 ≈ 3ω0 cannot be accounted for by any of the solutions obtained via flow equations. But

3 In appendix D the Rabi model is treated in perturbation theory based on the exactly solvable Jaynes–Cummings
Model. In this context resonances are characterized by the vanishing of the energy denominator of the perturbative
expansion.
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Figure 8. The fixed point parameters h∗
z ≡ hz(	 = ∞) (left-hand side) and χx,z∗ ≡ χx,z(	 = ∞)

(right-hand side) stemming from the symmetric flow equations of version a for ψ = 0, θ =
0, λ0/ω0 = 0.5 and ε0 = 0 for different orders of truncation of the operator flow as a function of
�0. The solid lines show the exact result.

there is a significant improvement from the second order to the first order result close to the
resonance at �0 ≈ ω0, especially in the case of χx,z∗. The improvement from third to second
order in the case of χx,z∗ is not as strong and the one particle parameter h∗

z is almost left
unchanged.

In figure 9, the results for the fixed point operator σ ∗
x are shown as they follow from the flow

equations of version a with the initial conditions λ0/ω0 = 0.5 and ε0 = 0. Four parameters
g∗
x ≡ gx(	 = ∞), f ∗

x ≡ fx(	 = ∞), χy,x∗ ≡ χy,x(	 = ∞), and χz,x∗ ≡ χz,x(	 = ∞) are
generated during the flow. They show the same deficiencies with respect to the exact solution
as the results of figure 8. We want to mention that the constant term f ∗

x is indeed generated,
as can be seen from the exact expansion.

To investigate the reason for the above discrepancies close to resonances further, we
are going to employ the numerically exact solution and determine the expansion of the final
operator σ ∗

z = UσzU
† including up to nine bosonic operators. Instead of analysing the graphs

of all 115 coefficients, we will consider the sum of the absolute values of the coefficients that
belong to the operator class which consists of n bosonic operators (nth order).

The resulting nine graphs are shown in figure 10. As can be seen, the second order still
contributes to the fixed point operator considerably. Close to resonances even higher orders
become important for the operator expansion. This explains why the fixed point parameter h∗

z

is not sufficiently recovered by the flow equation approach even after including all terms up
to three bosonic operators into the flow equations.

In appendix D, the spikes of figure 10 are related to degeneracies. The formalism thus
breaks down at these parameter configurations. This is related to the problem that occurs
when diagonalizing the Hamiltonian which is, strictly speaking, also only possible for non-
degenerate states.

Let us finally comment on sum rules that stem from operator relations which remain
invariant under unitary transformations. Taking the initial values for the Hamiltonian as in
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Figure 9. The parameters g∗
x ≡ gx(	 = ∞) and f ∗

x ≡ fx(	 = ∞) (left-hand side) as well as
χy,x∗ ≡ χy,x(	 = ∞) and χz,x ∗ ≡ χz,x (	 = ∞) (right-hand side) stemming from the symmetric
flow equations of version a for ψ = 0, θ = 0, λ0/ω0 = 0.5 and ε0 = 0 as a function of �0. The
solid lines show the analytic results.
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Figure 10. The sum of the absolute values of the coefficients of all operators that consist of n
bosonic operators (nth order) which compose σ ∗

z for λ0/ω0 = 0.5 and ε0 = 0 as a function of �0.

figure 8, the flow equations of version a yield the exact sum rule
〈
σ 2
z

〉 = h2 + (χx,z)2 = 1 at
T = 0 for all 	 and independent of the initial tunnel-matrix element�0. The sum rule is thus
not sensitive to the deviations between the flow equation results and the exact solution, which
become especially drastic close to resonances, see figure 8. We observe the situation that two
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errors are being cancelled to yield the desired result. We therefore conclude that the sum rule
cannot be a sufficient criterion for the quality of the operator flow. On the other hand, one
cannot expect the flow equations to yield good results on all energy scales. Properties at low
energies such as the ground-state expectation value of σz shown in figures 5 and 6 can still be
calculated with high precision. The typical deviations at resonances in the operator flow are
averaged out.

4. Conclusions

This work addresses general questions concerning the flow equation approach such as
optimization of the final results or invariance with respect to the initial Hamiltonian, based on
a simple non-trivial model. The model is structurally similar to quantum impurity models and
since the ‘bath’ only consists of one mode, it is numerically exactly solvable. We intended to
demonstrate that a systematic improvement of the flow equation approach is possible. In order
to improve the flow equations one can basically proceed according to the following lines:

1. Most obviously, one can include more interaction terms in the truncation scheme of
Hamiltonian and operator. This was done for the Hamiltonian flow when employing the
form-invariant truncation scheme and a systematic improvement was seen. We did not
extend the truncation scheme for the canonical generator because it is in principle not
feasible for more realistic models with an arbitrary number of bosonic modes. For the
operator flow, the truncation scheme was extended up to third order for a special parameter
regime and the results were compared with the exact solution on the operator level. Close
to resonances, the flow equation results showed significant deviations with respect to the
exact solution. These deviations were present even in the upgraded truncation schemes
since high orders of up to nine bosonic operators still carried considerable weight. This
is connected to the general problem that the flow equation approach breaks down close to
degenerate states.

2. Another way to improve the flow equations is to consider the neglected operators more
thoroughly, i.e. to introduce a refined decoupling scheme. This was done by introducing a
	-dependent bosonic shift δ and neglecting normal ordered bilinear bosonic operators with
respect to this shifted mode. The bosonic shift was deduced by formally diagonalizing the
truncated Hamiltonian and then decoupling the ‘system’ from the ‘bath’. The decoupling
process was not unambiguousand two different approaches were investigated. These were
labelled as direct and self-consistent evaluation of the system expectation values. The
self-consistent approach turned out to yield better results on the level of the Hamiltonian
flow; the direct approach was preferable on the level of the operator flow.

3. A third possibility to obtain better results is to choose a different basis on which the
flow is defined. For example, we want to mention the vertex flow introduced by Kehrein
[21]. We investigated the operator flow with respect to the distinguished bosonic mode
b̄ = b+δ/2. The infinitesimal unitary transformations are then equivalent to an active and
passive transformation since the coefficients as well as the operator basis b̄ are changing
during the flow. But the numerical results turned out to be worse than the ones based on
the flow with respect to the unshifted mode b. We therefore did not include them in the
discussion of the present paper. We want to emphasise, though, that there remains the
possibility to improve the flow equation results along these lines.

It is also pointed out that flow equations are, in general, not invariant with respect to the
initial Hamiltonian even though the Hamiltonians only differ by a unitary transformation. We
concluded that differences are, in general, small and if one chooses a form-invariant truncation
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scheme, the flow equations might not differ at all. But the fact that the results depend on
the unitary representation of the initial Hamiltonian opens up the possibility to optimize the
results by introducing an (arbitrary) number of parameters associated with possible unitary
transformations and choosing them such that certain sum rules are fulfilled best. This strategy
has been applied to the spin–boson model with external bias, where one parameter—associated
with the shift of the bosonic operators—was chosen such that the sum rule of σz was optimal
for all 	 [20]. What had to be left open was how to choose the optimal initial Hamiltonian for
the evaluation of a specific quantity—a priori.

The last part of the paper is dedicated to a detailed analysis of the operator flow. Since the
flow equations are usually designed such that the Hamiltonian is diagonalized best, i.e. the flow
only involves a few flow parameters, the transformation of the observable is more susceptible
to uncontrolled approximations, i.e. higher order interaction terms are often neglected merely
because they cannot be kept track of. For this reason, the exact operator fixed point was
evaluated, represented in the basis which was determined by the specific choice of the generator.
It turned out that the flow equations of the operator should include up to 115 interaction terms
in order to adequately coincide with the exact operator fixed point on all energy scales. We
also pointed out that exact sum rules resulting from the flow equations are mostly due to
high symmetries of the operator flow, i.e. when only a few terms are being generated. The
assumption that the flow is well approximated if a sum rule holds can thus be misleading as
was shown in the last section. Nevertheless, the deviations at points of degeneracies of the
operator flow with respect to the exact solution are unimportant for the low energy properties
of the system. This was demonstrated by evaluating the ground-state expectation value of σz
within the most simple, but non-trivial truncation scheme.
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Appendix A. The independent boson model

We want to give a brief introduction to the flow equation method based on the exactly solvable
independent boson model. The Hamiltonian of this model is given by

H = H0 + V = ωb†b + εc†c + λc†c(b + b†). (A1)

The b(†) resemble bosonic and the c(†) resemble fermionic operators. They obey the canonical
commutation and anti-commutation relations, respectively. The model can account for some
relaxation phenomena and is extensively discussed in the textbook by Mahan [22].

We set ε = λ2/ω. Then the Hamiltonian of equation (A1) is unitarily equivalent to
H = ωb†b + σzλ(b + b†), where σz denotes the z-component of the Pauli spin matrices. This
is the Rabi Hamiltonian (1) with �0 = 0.

The model is easily solved by the unitary transformation

U = exp

(
−c†c λ

ω
(b − b†)

)
(A2)

and we obtain the diagonalized Hamiltonian UHU † = ωb†b.
But we want to perform this unitary transformation continuously by introducing a flow

parameter 	 and a family of unitarily equivalent Hamiltonians H(	) = U(	)HU †(	). We
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also want to look closely at the transformed operator c(	) ≡ U(	)cU †(	) and question if an
expansion of the operator in a series of unbounded operators, namely (b−b†)n, is well defined.

The unitary operators U(	) shall be defined by the generator η which governs the
differential form of a continuous unitary transformation as follows: ∂	H = [η,H ]. A
good choice for the generator has proved to be η = [H0, V ], which is likely to eliminate the
interaction in the limit 	 → ∞ [2]. The 	-dependent unitary operator U(	) is related to the
generator η through the differential equation ∂	U = ηU which can be formally integrated to
yield U(	) = L exp

( ∫ 	
0 d	′η(	′)

)
. The operator L denotes the 	-ordering operator, defined

in the same way as the more familiar time-ordering operator T. In fact, the differential form
of the flow equations has got the same structure as the Heisenberg equation of motion, but
complete formal equivalence is only achieved for explicitly time-dependent Hamiltonians,
since the generator η is explicitly 	-dependent.

For the independent boson model the canonical generator reads η = −ωλc†c(b− b†) and
we readily obtain

[η,H ] = −ω2λc†c(b + b†)− 2ωλ2c†c. (A3)

The following flow equations

∂	λ = −ω2λ ∂	ε = −2ωλ2 (A4)

are integrated to yield λ(	) = λ exp(−ω2	) and ε(	) = λ2

ω
exp(−2ω2	). Since [η(	), η(	′)] =

0, the 	-ordering operator L becomes trivial and we obtain for the 	-dependent unitary operator

U(	) = exp

(
−c†c λ

ω

(
1 − e−ω2	

)
(b − b†)

)
. (A5)

From equation (A5) we can obtain the unique unitary operator for 	 → ∞ which diagonalizes
H and which was already given in equation (A2).

Given U(	) one can determine the flow of the operator c(	) directly:

c(	) = U(	)cU †(	) = c exp

(
δλ(	)

ω
(b − b†)

)
(A6)

= c exp

(
−1

2

(
δλ(	)

ω

)2
)

exp

(
−δλ(	)

ω
b†
)

exp

(
δλ(	)

ω
b

)
(A7)

≡ c exp

(
−1

2

(
δλ(	)

ω

)2
)∑
n=0

(
δλ(	)

ω

)n : (b − b†)n :

n!
(A8)

where we introduced δλ(	) = λ
(
1 − e−ω2	

)
and defined normal ordering, denoted by : · · · :,

by writing the creation operator left from the annihilation operator. This definition of normal
ordering resembles a special case of the general definition given in appendix A and is valid at
T = 0. But from now on the general definition will be used.

We now apply the continuous transformation to the operator c using the differential form
∂	c = [η, c]. The flow equations generate the infinite series c(	) = c

∑
n=0 γn(	)(b − b†)n

with ∂	γn+1 = ωλ(	)γn. Together with the initial condition γ0 = 1, γn = 0 for n � 1, this
set of differential equations can be solved to yield γn = 1

n!

(
δλ(	)

ω

)n
. The flow equation result

thus coincides with the non-normal ordered form of c(	) in equation (A6) if one expands the
exponential function into a Taylor-series.

At first sight there is no distinguished expansion of c(	) in bosonic operators since its
generation depends on η. In order to discuss a different scheme, we now define c(	) by a series
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of normal ordered operators, i.e. c(	) = c
∑

n=0 γn(	) : (b − b†)n :. We obtain the following
flow equations

∂	γn+1 = ωλ(	)(γn − (n + 2)γn+2) (A9)

where we used the formula (see appendix E)

(b − b†) : (b − b†)n : = : (b − b†)n+1 : +n〈(b − b†)2〉 : (b − b†)n−1 : (A10)

at T = 0, i.e. 〈(b − b†)2〉 = −1 with 〈. . .〉 denoting the bosonic ground-state expectation
value. Taking the same initial conditions as in the case of the non-normal ordered expansion,
we see that the normal ordered expansion in equation (A8) solves the set of differential
equations (A9), i.e. γn = exp

(− 1
2 (δλ(	)/ω)

2
)

1
n!

(
δλ(	)

ω

)n
.

This is a remarkable result. Whereas the non-normal ordered expansion of c(	) reproduces
the perturbative result in the coupling δλ for each coefficient γn, the normal ordered
expansion yields coefficients γn, which contain all powers of δλ. Especially in view of
later approximations, the normal ordered version will then be more preferable, since it is
likely to go beyond a perturbative description.

After having recovered the correct flow of the observable via the flow equation approach,
we would like to investigate the ‘stability’ of the infinite expansion of c(	) in unbounded
operators. For this purpose, we consider the Green function G(t) = −i〈T c(t)c†〉 and
the spectral function A(ω̃) = −ImG(ω̃)/π with the time ordering operator T, the Fourier
transform G(ω̃) = ∫

dt eiω̃tG(t) and 〈. . .〉 denoting the ground-state expectation value with
respect to H. With λ̃ ≡ λ/ω we obtain [22]

G(t) = −i�(t) exp(−λ̃2
(1 − e−iωt )) (A11)

A(ω̃) = e−λ̃2 ∑
n=0

λ̃
2n 1

n!
δ(ω̃ − nω). (A12)

The spectral function A(ω̃) thus exhibits the polaronic shift εp = −λ2/ω for n = 0 and
an equidistant satellite structure separated by the oscillator frequency ω with exponentially
decreasing weight.

Using flow equations, the Green function is best expressed as

G(t) = −i�(t)〈eiH(	=∞)t c†(	 = ∞)e−iH(	=∞)t c(	 = ∞)〉 (A13)

because then the time evolution of the fermionic and bosonic operator is that of free ones.
In order to recover the exact result, we first use the normal ordered expansion of c(	).

WithD(t) ≡ b(t)− b†(t), where the time evolution is given by the Heisenberg representation
with H(	 = ∞) = ωb†b, the Green function reads

G(t) = −i�(t) e−λ̃2

〈
c(t)

∑
n=0

λ̃
n

n!
: Dn(t) : c†

∑
m=0

λ̃
m

m!
(−1)m : Dm(0) :

〉
(A14)

= −i�(t) e−λ̃2 ∑
n,m=0

λ̃
n

n!

λ̃
m

m!
(−1)m〈: Dn(t) : : Dm(0) :〉 (A15)

= −i�(t) e−λ̃2 ∑
n,m=0

λ̃
n

n!

λ̃
m

m!
n!δn,m e−inωt . (A16)

To get from equation (A15) to (A16) we used the following formula (appendix E):

: (b − b†)n : : (b − b†)m : = : exp

(
〈(b − b†)2〉 ∂2

∂x1∂x2

)
xn1x

m
2

∣∣
x1=x2=(b−b†) : (A17)
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with 〈(b − b†)2〉 = −1 and 〈: (b − b†)n :〉 = 0 at T = 0. Summing up the series in
equation (A16) indeed yields the exact result given in equation (A11).

In order to show that the non-normal ordered expansion of c(	) also leads to the correct
result, we have to normal order this expansion. For this we need the following formula
(appendix E):

(b − b†)n =
[ n−1

2 ]∑
k=0

1

k!

n!

2k(n− 2k)!
〈(b − b†)2〉k : (b − b†)n−2k : . (A18)

Considering for the moment only the first (N + 1) even powers of (b − b†), we obtain
N∑
n=0

λ̃
2n

2n!
(b − b†)2n =

N∑
n=0

n∑
k=0

λ̃
2k

2k
Gk

k!

λ̃
2(n−k)

2(n− k)!
: (b − b†)2(n−k) : (A19)

=
N∑
m=0

λ̃
2m

2m!
: (b − b†)2m :

N−m∑
k=0

λ̃
2k

2k
Gk

k!
(A20)

where we introducedG ≡ 〈(b − b†)2〉, 〈· · ·〉 denoting the canonical ensemble average over a
free bosonic system. The summation of the first (N + 1) odd powers of (b − b†) yields
N∑
n=0

λ̃
2n+1

(2n + 1)!
(b − b†)2n+1 =

N∑
m=0

λ̃
2m+1

(2m + 1)!
: (b − b†)2m+1 :

N−m∑
k=0

λ̃
2k

2k
Gk

k!
. (A21)

In the limit N → ∞ we obtain∑
n=0

λ̃
n

n!
(b − b†)n = e

1
2Gλ̃

2 ∑
n=0

λ̃
n

n!
: (b − b†)n : (A22)

which is an extension of the previous normal ordering of equation (A8) to finite temperatures,
sinceG = −(1 + n), n ≡ (eβω − 1)−1 being the Bose factor. This shows that both expansions
of c(	) are equivalent.

To complete the discussion we will now verify that the anti-commutation relation
{c(	), c†(	)} = 1 holds for all 	. To show this we will employ the non-normal ordered
expansion. This yields

{c(	), c†(	)} = 1

2

∑
n,n′=0

γnγn′((−1)n + (−1)n
′
)(b − b†)n+n′

(A23)

=
∑
n=0

2n∑
k=0

(−1)kγ2n−kγk(b − b†)2n = 1. (A24)

Summarizing, the series expansion of an operator into bosonic operators yields consistent
results. This is no trivial result since expanding the bounded operator c into unbounded
operators (b − b†)n might have led to inconsistencies. Further, it has to be borne in mind that
the initial operator of the operator flow is resembled by c(	 = 0) = c ⊗ 1B , with 1B being
the unity operator of the bosonic Hilbert space. One consequence then is that the trace of the
initial operator is unbounded and thus not defined.

As a second result, we want to mention that both expansions, normal ordered and non-
normal ordered, are equivalent if no approximations are involved. Nevertheless, the operator
expansion into normal ordered operators seems to be a distinguished expansion since it
resembles a non-perturbative approach including the Debye–Waller factor.
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Appendix B. The constant term in the expansion of σx and σz

In this appendix we want to comment on the constant term fi appearing in the expansion of
the Pauli spin matrices σx and σz. This term seems to contradict the theorem of the invariance
of the trace under unitary transformations. But since the trace of σi(	 = 0) = σi ⊗ 1, 1 being
the identity of the bosonic Hilbert space, does not exist and since we also expand the Pauli spin
matrices in a series of unbounded operators, the above mentioned theorem no longer holds.
To make sure that the constant term is indeed physical, one can truncate the Hilbert space by
introducing the ‘bosonic’ operator

b → bN = b
√
(1 − b†b/N) (B1)

with N being a positive integer. The truncated Hilbert space is now only spanned by N vectors
|ν〉 = (b†)ν/

√
ν!|0〉 with ν = 0 . . .N − 1 and b|0〉 = 0. For N → ∞ we recover the bosonic

Hilbert space. The above theorem is guaranteed due to the new, non-canonical commutation
relation

[
bN, b

†
N

] = 1 − (1 + 2b†b)/N which obeys the cyclic invariance of the trace:

tr
([
bN, b

†
N

]) =
N−1∑
ν=0

(
1 − 1 + 2ν

N

)
= 0. (B2)

The flow equations now have to be extended to include the flow of the operator b†b that appears
in the commutator relation and that scales as 1/N . The constant term fi appears nevertheless
and is governed by the same differential equation as N → ∞. Both terms together, the
constant term fi and the bosonic bilinear b†b, make sure that no trace is generated during the
flow.

Appendix C. Upgraded flow equations for σz

In this appendix, we will set up the flow equations for the Pauli matrix σz including higher
orders in the bosonic operators. Since the basic objects of our expansion are normal ordered
operators we will first give some (anti-) commutation relations which are helpful to evaluate
the commutator [η, σz] (see also appendix E):

[x, : pnxm :] = −2n : pn−1xm : [p, : pnxm :] = 2m : pnxm−1 : (C1)

{x, : pnxm :} = 2 : pnxm+1 : +2m : pnxm−1 : 1n (C2)

{p, : pnxm :} = 2 : pn+1xm : −2n : pn−1xm : 1n. (C3)

The commutator of two tensor products of the fermionic and bosonic Hilbert space can be
written as [oB, o′B ′] = {o, o′}[B,B ′]/2 + [o, o′]{B,B ′}/2 which is a useful identity if the
anti-commutator {o, o′} vanishes (o, o′ ∈ He, B,B

′ ∈ Hb).
We will not present the commutator [η, σz] explicitly but only account for the additional

terms that appear with respect to the previous flow equations. For the first extension σ new,2
z ,

this yields

∂	gz = · · · + 2ηxχ1 ∂	hz = · · · + 2ηzχ1 (C4)

∂	χ
x = · · · − 2ηzψy1n − 4ηyψz,+1n (C5)

∂	χ
y = · · · − 4ηzψx,−1n + 4ηxψz,−1n (C6)

∂	χ
z = · · · + 2ηxψy1n + 4ηyψx,+1n (C7)
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∂	χ
1 = 4ηzψz,+ − 2ηyψy + 4ηxψx,+ (C8)

∂	ψ
x,+ = −2ηyχz − 2η0,yψz,+ (C9)

∂	ψ
y = 2ηzχx − 2ηxχz (C10)

∂	ψ
z,+ = 2ηyχx + 2η0,yψx,+ (C11)

∂	ψ
x,− = 2ηzχy − 2η0,yψz,− (C12)

∂	ψ
z,− = −2ηxχy + 2η0,yψx,−. (C13)

Additional contributions relative to the previous flow equations coming from σ new,3
z read

∂	χ
x = · · · + 4ηxψ1,+ ∂	χ

y = · · · − 4ηyψ1,− ∂	χ
z = · · · + 4ηzψ1,+ (C14)

∂	ψ
x,+ = · · · − 2ηzϕy,+1n − 6ηyϕz,+1n (C15)

∂	ψ
y = · · · − 4ηzϕx,−1n + 4ηxϕz,−1n (C16)

∂	ψ
z,+ = · · · + 2ηxϕy,+1n + 6ηyϕx,+1n (C17)

∂	ψ
x,− = · · · − 6ηzϕy,−1n − 4ηyϕz,−1n (C18)

∂	ψ
z,− = · · · + 6ηxϕy,−1n + 4ηyϕx,−1n. (C19)

The flow equations for the new parameters of σ new,3
z yield

∂	ψ
1,+ = 6ηzϕz,+ + 2ηyϕy,+ + 6ηxϕx,+ (C20)

∂	ψ
1,− = 2ηzϕz,− + 6ηyϕy,− + 2ηxϕx,− (C21)

∂	ϕ
x,+ = −2ηyψz,+ − 2η0,yϕz,+ (C22)

∂	ϕ
y,+ = 2ηzψx,− − 2ηxψz,− (C23)

∂	ϕ
z,+ = 2ηyψz,+ + 2η0,yϕx,+ (C24)

∂	ϕ
x,− = 2ηzψy − 2ηyψz,− − 2η0,yϕz,− (C25)

∂	ϕ
y,− = 2ηzψx,+ − 2ηxψz,+ (C26)

∂	ϕ
z,− = −2ηxψy + 2ηyψx,− + 2η0,yϕx,−. (C27)

Appendix D. Rabi model in perturbation theory

In this appendix we will treat the Rabi Hamiltonian in perturbation theory. We want to
start from the exactly solvable Jaynes–Cummings Hamiltonian which is obtained from the
symmetric Rabi Hamiltonian with no bias by applying the rotating wave approximation [18].
This approximation neglects coupling or transition terms which are energetically unlikely.

It is useful to write the Hamiltonian in a basis where σx is diagonal. The Rabi Hamiltonian
shall thus be given by

H =
∑
i=0,1

εic
†
i ci + ω0b

†b + λbc†1c0 + λb†c†0c1 + λ′b†c†1c0 + λ′bc†0c1. (D1)

The operators c(†)i and b(†) obey the canonical anti-commutation and commutation relations,
respectively. We identify the Rabi Hamiltonian given in equation (1) by setting ε1 − ε0 = �0

and λ = λ′ = 2λ0 and the zero external bias.
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The Jaynes–Cummings Hamiltonian is obtained by setting λ′ = 0 in equation (D1).
We want to treat the so-called off-shell processes, characterized by λ′, within a systematic
perturbation approach. One way to do so is to consider the Hamiltonian in the basis
{|0; 2n〉|1; 2n + 1〉} and {|0; 2n + 1〉, |1; 2n〉} where the first quantum number resembles the
fermionic state and the second quantum number resembles the bosonic state. Since the
Hamiltonian is symmetric with respect to parity the two sets decouple and in the following we
will only consider the first set.

In the above basis, the Hamiltonian is tridiagonal and we define the n-dependent matrices

Don(n) ≡
(
ε1 + 2nω0

√
2n + 1λ√

2n + 1λ Doff(n + 1)

)

Doff(n + 1) ≡
(
ε0 + (2n + 1)ω0

√
2n + 2λ′

√
2n + 2λ′ Don(n + 1)

)
.

(D2)

The determinants can formally be evaluated to yield

detDon(n) = (ε1 + 2nω0) detDoff(n + 1)− (2n + 1)λ2 detDon(n + 1)
(D3)

detDoff(n + 1) = (ε0 + (2n + 1)ω0) detDon(n + 1)− (2n + 2)λ′2 detDoff(n + 2).

The matrix Don(0) resembles the representation of the Rabi Hamiltonian in the above
basis. To determine the eigenvalue µ of the matrix up to O(λ′2) we iterate equation (D3)
starting with Don(0):

det(Don(0)− µ) → [(ε1 − µ)(ε0 + ω0 − µ)− λ2][(ε1 + 2ω0 − µ)(ε0 + 3ω0 − µ)− 3λ2]

× det(Don(2)− µ)− (ε1 − µ)2λ′2(ε0 + 3ω0 − µ) det(Don(2)− µ) = 0.

(D4)

For the eigenvalues we make the ansatz µ = µ(0) + λ′2µ(1). There is no linear term in λ′

since the spectrum of H may not depend on the phase of the coupling constant.
We now order the eigenvalues as follows: the lowest eigenvalues of order O(λ′0), µ(0)0,±,

are determined by setting the first factor on the right-hand side of equation (D4) to zero.
We obtain the well-known Jaynes–Cummings result µ(0)0,± = ε0 + ω0 − (�̄ ∓ R0)/2 with the
detuning �̄ ≡ (ε1−ε0)−ω0 and the zeroth Rabi frequencyR2

0 = �̄2 +4λ2. The first correction
to µ(0)0,± then yields

µ
(1)
0,± = 1

∓R0

�̄ω0 ± R0ω0 − λ2

2ω2
0 ∓ R0ω0 − λ2

. (D5)

The result agrees with the perturbative result in the limit λ = λ′ � �̄.
Generally, setting the nth factor of the first line on the right-hand side of equation (D4)

to zero the nth eigenvalues yield µ(0)n,± = ε0 + (2n + 1)ω0 − (�̄ ∓ Rn)/2 with R2
n = �̄2 +

4(2n + 1)λ2. The first correction to µ(0)n,± is given by

µ
(1)
n,± = 1

∓Rn

[
(n + 1)

�̄ω0 ± Rnω0 − λ2

2ω2
0 ∓ Rnω0 − (n + 1)λ2

+ n
�̄ω0 ∓ Rnω0 − λ2

2ω2
0 ± Rnω0 − (n− 1)λ2

]
. (D6)

The perturbative approach breaks down when degenerated states are involved. This is
indicated by the poles in the energy corrections µ(1)n,±. Setting the denominator of µ(1)0,± zero,

one obtains for the tunnel-matrix element �0 = ω0 +
√(

2ω2
0 − λ2

)2 − 4ω2
0λ

2
/
ω0. Inserting

the parameters used for figure 8, we obtain�0 ≈ 2.87. This value approximately agrees with
the value of �0 where the second spike of hz in figure 8 is seen.
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Appendix E. Normal ordering

In this appendix we want to summarize basic relations concerning normal ordering. This
summary is based on unpublished notes by Wegner (2000) in which he presents a general
formalism for normal ordering of classical and quantum fields with respect to a bilinear
Hamiltonian [23]. We will restrain ourselves to the normal ordering of bosonic quantum
fields.

Let bk be any linear combination of Bose creation and annihilation operators. The matrix
G shall describe the correlations of the operators b for a Hamiltonian H bilinear in the creation
and annihilation operators: 〈bkbl〉 = Gkl . The commutator is given by [bk, bl] = Gkl −Glk.
Normal ordering of an operator A with respect to the Hamiltonian H is now defined by

: 1 : = 1 (E1)

: αA(b) + βB(b) : = α : A(b) : +β : B(b) : (E2)

bk : A(b) : = : bkA(b) : +
∑
l

Gkl :
∂A(b)

∂bk
: . (E3)

The product of m operators bki with i = 1, . . . ,m is now obtained by iterating the third
equation. One obtains

bk1bk2 , . . . , bkm = :

(
bk1 +

∑
l1

Gk1,l1

∂

∂bl1

)(
bk2 +

∑
l2

Gk2,l2

∂

∂bl2

)
. . . bkm : (E4)

which can also be written as

bk1bk2 , . . . , bkm = : exp

(∑
kl

Gkl

∂2

∂bleft
k ∂b

right
l

)
bk1bk2 , . . . , bkm : . (E5)

This is Wick’s first theorem [24]. The superscripts left and right indicate that we always pick
a pair of factors b and perform the derivative ∂/∂bk on the left factor and the derivative ∂/∂bl
on the right factor, so that the factor Gkl depends on the sequence of the operators.

Similarly one obtains

: bk1bk2 , . . . , bkm : = exp

(
−
∑
kl

Gkl

∂2

∂bleft
k ∂b

right
l

)
bk1bk2 , . . . , bkm. (E6)

The formula for the product of two normal ordered operators is given by

: A(b) : : B(b) : = : exp

(∑
kl

Gkl

∂2

∂bk∂al

)
A(b)B(a) : |a=b. (E7)

This is Wick’s second theorem.
One can now show that under normal ordering the commutative law holds: : ABCD :=:

ACBD :. This is rule C of Wick.
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